\begin{tabbing} $\forall$\=$k$:Knd, $T$:Type, $l$:IdLnk, ${\it ds}$,${\it dt}$:fpf(Id; ${\it tg}$.Type),\+ \\[0ex]$g$:((${\it tg}$:Id $\times$ (decl{-}state(${\it ds}$)$\rightarrow$$T$$\rightarrow$(decl{-}type\{i:l\}(${\it dt}$; ${\it tg}$) List))) List). \-\\[0ex](($\uparrow$isrcv($k$)) \\[0ex]$\Rightarrow$ \=((destination(lnk($k$)) = source($l$) $\in$ Id)\+ \\[0ex]$\wedge$ (($\uparrow$eq\_lnk(lnk($k$); $l$)) $\Rightarrow$ ($T$ = decl{-}type\{i:l\}(${\it dt}$; tag($k$)))))) \-\\[0ex]$\Rightarrow$ normal{-}ds\=\{i:l\}\+ \\[0ex](${\it ds}$) \-\\[0ex]$\Rightarrow$ normal{-}type\=\{i:l\}\+ \\[0ex]($T$) \-\\[0ex]$\Rightarrow$ normal{-}ds\=\{i:l\}\+ \\[0ex](${\it dt}$) \-\\[0ex]$\Rightarrow$ R{-}realizes\=\{i:l\}\+ \\[0ex](Rsends(${\it ds}$; $k$; $T$; $l$; ${\it dt}$; $g$); ${\it es}$.sends{-}p(${\it es}$; ${\it ds}$; $k$; $T$; $l$; ${\it dt}$; $g$)) \- \end{tabbing}